DRILA: A Distributed Relational Inductive Learning Algorithm

نویسنده

  • SALEH M. ABU-SOUD
چکیده

This paper describes a new rule discovery algorithm called Distributed Relational Inductive Learning DRILA, which has been developed as part of ongoing research of the Inductive Learning Algorithm (ILA) [11], and its extension ILA2 [12] which were built to learn from a single table, and the Relational Inductive Learning Algorithm (RILA) [13], [14] which was developed to learn from a group of interrelated tables, i.e. a centralized database. DRILA allows discovery of distributed relational rules using data from distributed relational databases. It consists of a collection of sites, each of which maintains a local database system, or a collection of multiple, logically interrelated databases distributed over a computer network. The basic assumption of the algorithm is that objects to be analyzed are stored in a set of tables that are distributed over many locations. Distributed relational rules discovered would either be used in predicting an unknown object attribute value, or they can be used to extract the hidden relationship between the objects' attribute values. The rule discovery algorithm, developed, was designed to use data available from many locations (sites), any possible ‘connected’ schema at each location where tables concerned are connected by foreign keys. In order to have a reasonable performance, the ‘hypotheses search’ algorithm was implemented to allow construction of new hypotheses by refining previously constructed hypotheses, thereby avoiding the work of recomputing. Unlike many other relational learning algorithms, the DRILA algorithm does not need its own copy of distributed relational data to process it. This is important in terms of the scalability and usability of the distributed relational data mining solution that has been developed. The architecture proposed can be used as a framework to upgrade other propositional learning algorithms to relational learning. Key-words: Distributed Relational Rule Induction, Rule Selection Strategies, Inductive Learning, ILA, ILA2, RILA, DRILA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combining Clauses with Various Precisions and Recalls to Produce Accurate Probabilistic Estimates

Statistical Relational Learning (SRL) combines the benefits of probabilistic machine learning approaches with complex, structured domains from Inductive Logic Programming (ILP). We propose a new SRL algorithm, GleanerSRL, to generate probabilities for highly-skewed relational domains. In this work, we combine clauses from Gleaner, an ILP algorithm for learning a wide variety of first-order clau...

متن کامل

Propositionalization of Relational Learning: An Information Extraction Case Study

This paper develops a new propositionalization approach for relational learning which allows for efficient representation and learning of relational information using propositional means. We develop a relational representation language, along with a relation generation function that produces features in this language in a data driven way; together, these allow efficient representation of the re...

متن کامل

Planning for Relational Rules

Planning refers to the notion of finding actions that are near-optimal in order to accomplish a specified goal. Relational rules are a powerful language to represent domains and have been used for a long time in a subfield of machine learning called Inductive Logic Programming. The combination of these two fields results in planning algorithms for domains that are modelled using relational rule...

متن کامل

Prototype Learning with Attributed Relational Graphs

An algorithm for learning structural patterns given in terms of Attributed Relational Graphs (ARG’s) is presented. The algorithm, based on inductive learning methodologies, produces general and coherent prototypes in terms of Generalized Attributed Relational Graphs (GARG’s), which can be easily interpreted and manipulated. The learning process is defined in terms of inference operations especi...

متن کامل

Learning Onto-Relational Rules with Inductive Logic Programming

Rules complement and extend ontologies on the Semantic Web. We refer to these rules as onto-relational since they combine DL-based ontology languages and Knowledge Representation formalisms supporting the relational data model within the tradition of Logic Programming and Deductive Databases. Rule authoring is a very demanding Knowledge Engineering task which can be automated though partially b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009